Redirection of metabolism for biological hydrogen production.
نویسندگان
چکیده
A major route for hydrogen production by purple photosynthetic bacteria is biological nitrogen fixation. Nitrogenases reduce atmospheric nitrogen to ammonia with the concomitant obligate production of molecular hydrogen. However, hydrogen production in the context of nitrogen fixation is a rather inefficient process because about 75% of the reductant consumed by the nitrogenase is used to generate ammonia. In this study we describe a selection strategy to isolate strains of purple photosynthetic bacteria in which hydrogen production is necessary for growth and independent of nitrogen fixation. We obtained four mutant strains of the photosynthetic bacterium Rhodopseudomonas palustris that produce hydrogen constitutively, even in the presence of ammonium, a condition where wild-type cells do not accumulate detectable amounts of hydrogen. Some of these strains produced up to five times more hydrogen than did wild-type cells growing under nitrogen-fixing conditions. Transcriptome analyses of the hydrogen-producing mutant strains revealed that in addition to the nitrogenase genes, 18 other genes are potentially required to produce hydrogen. The mutations that caused constitutive hydrogen production mapped to four different sites in the NifA transcriptional regulator in the four different strains. The strategy presented here can be applied to the large number of diverse species of anoxygenic photosynthetic bacteria that are known to exist in nature to identify strains for which there are fitness incentives to produce hydrogen.
منابع مشابه
Performance of Biological hydrogen Production Process from Synthesis Gas, Mass Transfer in Batch and Continuous Bioreactors
Biological hydrogen production by anaerobic bacterium, Rhodospirillum rubrum was studied in batch and continuous bioreactors using synthesis gas (CO) as substrate. The systems were operated at ambient temperature and pressure. Correlations available in the literature were used to estimate the gas-liquid mass transfer coefficients (KLa) in batch reactor. Based on experimental results for the con...
متن کاملStereo-Specific Transcript Regulation of the Polyamine Biosynthesis Genes by Enantiomers of Ornithine in Tobacco Cell Culture
Background: Ornithine (Orn) plays an essential role in the metabolism of plant cells through incorporation in polyamines biosynthesis, the urea cycle and nitrogen metabolism. Physiological response of the plant cells to its two enantiomers have not been widely investigated yet.Objectives: This study aimed to evaluate effect of ornithine enantiomers on exp...
متن کاملDevelopment of Palladium-Alloy Membranes for Hydrogen Separation and Purification
This paper summarizes R&D activities and progress at NORAM Engineering and the University of British Columbia (UBC) on preparation and testing of thin palladium-based membranes and their applications. Most of these activities were carried out internally at NORAM, some jointly with UBC and their spin-off company, Membrane Reactor Technology (MRT) through a wide range of projects. Key results out...
متن کاملShifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis
Maximizing the flow of metabolic hydrogen ([H]) in the rumen away from CH4 and toward volatile fatty acids (VFA) would increase the efficiency of ruminant production and decrease its environmental impact. The objectives of this meta-analysis were: (i) To quantify shifts in metabolic hydrogen sinks when inhibiting ruminal methanogenesis in vitro; and (ii) To understand the variation in shifts of...
متن کاملThe Effects of Use Medicinal Plants on Rumen Fermentation Parameters in Ruminants
Rumen is a persistent and specific ecosystem consists of bacteria, protozoa and fungus where feed fermentation takes place in it. Produced Hydrogen in rumen can be used in the synthesis of the volatile fatty acids and the microbial protein and its excess would be eliminated through the production of Methane by methanogenesis. Nutritionists have tried to find ways to decrease loss and energy and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 73 5 شماره
صفحات -
تاریخ انتشار 2007